
Cure Behavior of Paper-Phenolic Composite Systems: 
Kinetic Modeling 

ERDOGAN KIRAN" and RAJAN IYER 

Department of Chemical Engineering, University of Maine, Orono, Maine 04469 

SYNOPSIS 

Cure reactions in paper-phenolic composite systems were studied by differential scanning 
calorimetry. A phenomenological approach was used to characterize the cure kinetics. Var- 
ious kinetic models including homogeneous reaction, diffusion-controlled reactions, surface 
reaction and phase boundary movement, and nucleation and growth-type kinetic models 
have been tested. Kinetic analyses using integral and derivative procedures on dynamic 
and isothermal data indicate that the cure reaction data can be described well with the 
homogeneous first-order reaction model or the Jander three-dimensional diffusion model. 
The activation energies are found to be in the range 20-40 kJ/mol. 0 1994 John Wiley & 
Sons, Inc. 

INTRODUCTION 

Paper-phenolic composites such as laminates are 
manufactured by curing papers impregnated with 
phenolic thermosetting resins. Understanding the 
cure behavior and the cure kinetics is an important 
area of research for the manufacture of such com- 
posite materials. 

Even though there is extensive literature on cure 
reactions and kinetics of epoxy systems and their 
composites with specialty fibers, literature on the 
phenomenological and kinetic aspects of the curing 
of phenolic systems and those containing cellulosic 
fibers is We have recently' conducted a 
critical evaluation of procedures to study the cure 
process and to determine the heat of cure and con- 
version as a function of time or temperature in pa- 
per-phenolic composite systems. We now focus on 
the kinetic modeling of these reactions using differ- 
ential scanning calorimetry. 

Differential scanning calorimetry is often used to 
study cure reactions under isothermal or dynamic 
( nonisothermal) modes.3 To evaluate the kinetic 
parameters, in the isothermal mode, experiments 
must be conducted at different temperatures. The 
attractive feature of isothermal experiments is that 
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the rate constant a t  each temperature is better de- 
fined and the determination of the rate constants 
a t  different temperatures would permit the deter- 
mination of the activation energy associated with 
the cure reactions. However, the nature of the re- 
actions and the final products may differ a t  different 
temperatures, and the kinetic parameters thus ob- 
tained are not without ambiguity. Since numerous 
reactions occur simultaneously, the activation ener- 
gies must be regarded as the "apparent" activation 
energies. 

Dynamic experiments, conducted at a specified 
heating rate, yield conversion-time-temperature 
data that are comprehensive enough to permit direct 
evaluations of the kinetic parameters. A single dy- 
namic run gives as much information as do several 
isothermal runs. Furthermore, dynamic measure- 
ments can provide kinetic information over a larger 
temperature range and there is no precure problems 
as is the case with isothermal experiments in which 
the sample must be first heated to the isothermal 
hold temperature during which cure reactions may 
take place.7 In this study, both isothermal and dy- 
namic experiments have been conducted and the re- 
sults from both types of measurements have been 
compared. 

Different methodologies have been used in the 
literature for the evaluation of kinetic parame- 
t e r ~ . ~ , " - ~ ~  In general, kinetic expressions may be 
phenomenological or mechanistic. Phenomenolog- 
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ical models relate to the main features of the reaction 
kinetics and do not take into account individual re- 
actions, whereas mechanistic models are obtained 
from balances of species involved in the reaction. 

The phenomenological approach has been pre- 
ferred in this study because the curing process is so 
complex that it is very difficult to identify each and 
every reaction. The phenomenological reaction rate 
can be expressed either in the differential form: 

da 
dt 
- = k f  ( a )  

or in the integrated form: 

Table I Kinetic Models Evaluated; Rate = M(a) 

where a is the fractional conversion at any time t; 
k, the Arrhenius rate constant, and f ( a ) ,  a func- 
tional form of a that depends on the reaction mech- 
anism. 

The methodology of evaluating fractional con- 
versions is described in the preceding paper.7 They 
are determined from the ratio of the partial to total 
peak areas (representing partial and total heat of 
cure) associated with the cure reaction. 

Functional forms of f ( a )  representing different 
reaction mechanisms have been described in the 
l i t e r a t ~ r e ~ ' ' ~  and the ones tested in the present study 
are shown in Table I. Table I includes homogeneous 
reaction models, autocatalytic reaction models, 
phase boundary movement (or surface reaction) 
models, and nucleation and growth models. In the 

Model 

Homoeeneous reaction models 

First order 

nth order 

Autocatalvtic reaction 

-ln(l - a) 
[ l  - (1 - a)(l-") 1 

(1 - n) 

m = l , n = l  
m = 2 , n = 1  
m = 2, n = 2 

a"(1 - a)" In[a/(l  - 4 1  
ln[a/(l  - a)] - 1/a 
21n[a/(l - a)] + 1/(1 - a) - l / a  

Reaction interface models (phase boundary movement models) 

Diffusion Controlling 
One-dimensional diffusion 

where 
1 
n 

n = 1/4; 1/3; 1/2; 2 - a(l-n) a" 

-1 
ln(1 - a) 

Two-dimensional diffusion (1 - a) ln( l  - a) + a 

Three-dimensional diffusion 
3(1 - 

Jander kinetics [I - (1 - a)1/312 
2[1 - (1 - 41 /31  

(3/2)[(1 - - 11 1 - 2/3a - (1 - Gintsling-Brounshtein 
kinetics 

Surface reaction controlling 

1 - (1 - a p  (n  - 1) 
n 

Contracting geometry n = 2; 3 n(1 - a) - 

Nucleation and growth models 

Random nucleation a in a 
Avrami-Erofeev kinetics with, 

n = 1; 1.5; 2; 3; 4 n(1 - a)[-ln(l - a)]('-''") [-ln(l - a)]'/" 
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table, for each model, in addition to the form off ( a ) ,  
the integrated form, g( a) is also included. 

Applicability of a model can be tested using either 
derivative [ eq. ( 1 ) ] or the integral form [ eq. (2)  3 
of the rate expressions. Both approaches have been 
evaluated in the present study to determine the va- 
lidity of a mechanism and the consistency of the 
rate constants and activation energies. 

I I 

1 I I1 

EXPERIMENTAL 

Samples 

Phenolic resin-impregnated Kraft paper composites 
were prepared using a generic phenol-formaldehyde 
resin in methanol-water solutions. The resin con- 
tent of the composites were 27% by weight. 

Differential Scanning Calorimetry 

A Perkin-Elmer DSC-2 differential scanning calo- 
rimeter digitized in our lab~ratory '~, '~  for data col- 
lection and analysis has been used in all experi- 
ments. 

With this system, heats of transitions are deter- 
mined with an accuracy better than a2.576. Proce- 
dures for the determination of peak areas, heats of 
transformations, and fractional conversions are de- 
scribed In all experiments, stainless- 
steel large-volume capsules were used to suppress 
liberation of volatiles and prevent loss of mass. 
These capsules are capable of withstanding pres- 
sures up to 350 psi (2.4 MPa) , which in the present 
study limited the experiments to temperatures below 
525 K. 

Time. sec 

Figure 1 Isothermal run on composite at  450 K ( 10 K/  
min approach). Sample weight normalized to 7.5 mg. Re- 
gion I, dynamic heating range; Region 11, isothermal hold 
range. 

Time, sec 

Figure 2 Comparative conversion profiles obtained 
from dynamic scans conducted at  10, 20, and 40 K/min 
heating rates. 

Heating Modes 

Experiments were conducted either under dynamic 
heating modes of 10, 20, and 40 K/min up to 520 
K or isothermally at 430,440,450,460, and 470 K. 
In isothermal experiments, the effect of different 
heating rates (i.e., 10, 20, 40 K/min) to reach the 
selected isothermal hold temperatures were evalu- 
ated. 

RESULTS AND DISCUSSION 

Fractional Conversions 

Figure 1 shows a typical DSC scan obtained by 
heating the sample at 10 K/min up to 450 K and 
then holding isothermally thereafter. The scan a in 
the figure shows the exotherm associated with the 
cure process in the dynamic heating range and the 
decaying signal in the isothermal hold range. The 
base line is obtained by repeating the DSC scan after 
cure reactions have been completed. The total area 
between the initial and final scans provide the 
needed information to calculate the heat of cure' 
and the partial areas corresponding to different time 
during cure provide the needed information to cal- 
culate fractional conversions. 

Figure 2 shows the fractional conversion data ob- 
tained from dynamic experiments conducted at 10, 
20, and 40 K/min heating rates in the temperature 
range of 350-520 K. All the samples were held iso- 
thermally for 15 min after reaching 520 K to ensure 
complete cure.' As expected, to achieve the same 
degree of conversion requires a longer time in slower 
heating modes. 
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Figure 3 shows the fractional conversion data ob- 
tained from isothermal experiments conducted at 
435, 440, 450, and 470 K. In all these experiments, 
the isothermal hold temperatures were approached 
at 10 K/min. 

Figure 4 shows the fractional conversion in iso- 
thermal experiments conducted at 450 K but ap- 
proached at  different heating rates. To achieve the 
same degree of conversion requires a longer time 
under the slower approach to hold the temperature. 

Kinetic Modeling 

Kinetic modeling has been carried out in a series of 
steps. As stated earlier, kinetic modeling can be per- 
formed using both derivative or integral procedures. 
If the derivative mode of analyses is used, then ki- 
netic modeling starts with eq. ( 1 ) .  If the integral 
mode of analyses is used, then kinetic modeling 
starts with eq. (2) .  After choosing the mode of anal- 
ysis, for the kinetic model to be tested, the functional 
form f (a) is selected from Table I. Then, the ex- 
perimental conversion-time data is used to test the 
model. The testing criteria are high regression coef- 
ficients and adherence to intercept requirements. A 
successful model should describe the experimental 
data irrespective of the mode of analysis. Procedures 
and results of the analyses are presented in the fol- 
lowing sections. These procedures and computer 
software have been all tested and verified with sim- 
ulated conversion-time data for different models. 

0 200 400 600 800 1000 1200 1400 1600 1800 

Time, sec 

Figure 3 Comparative conversion profiles obtained 
from isothermal scans conducted at 430, 440, 450, 460, 
and 470 K with 10 K/min approach to the isothermal 
temperature. 

Time, sec 

Figure 4 Comparative conversion profiles obtained 
from isothermal scans conducted at 450 K at 10, 20, and 
40 K/min approach to hold temperature. 

Modeling Using Conversion Data from Dynamic 
Experiments 

Derivative Method of Analysis 

By incorporating the Arrhenius form of the rate 
constant k, i.e., 

k = A exp(-E/RT), 

eq. ( 1 )  can be modified as 

( 3 )  

where A is the frequency factor; E, the activation 
energy; R, the gas constant; and T, the temperature 
in K. 

Taking the logarithm of both sides, we get 

d a / d t  E 
In - = In A - - f ( f f )  RT ( 4 )  

which forms the starting equation for the derivative 
analysis of the dynamic data. The computer program 
reads in the dynamic data from the data file and 
calculates In { ( d a / d t )  / [ f (a) ] } for each conversion 
point using the functional form for the chosen model. 
A plot of the left-hand side of the above equation 
against 1 / T should give a straight line with a slope 
of -E/R for the correct functional form f (a). The 
intercept is In A from which the frequency factor 
can be evaluated. 
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Integral Method of Analysis 

Equation ( 1 ) , after including the Arrhenius form of 
the rate constant and rearrangement, can be inte- 
grated up to a certain conversion a corresponding 
to a time t: 

This integration is carried out numerically with 
an appropriate computer program. For common ki- 
netic models, the left-hand side can be integrated 
analytically, and these are given as g( a) functions 
in Table I. Therefore, eq. ( 5 )  can be written as 

where 

A computer program reads the conversion-tem- 
perature-time data and uses it to carry out the anal- 
ysis for the selected kinetic model. The software 
calculates g( a) - g( 0) and stores it in an array. An 
initial guess for the activation energy is made that 
is numerically corrected until a satisfactory solution 
is obtained. The program starts with an initial guess 
for the interval of E / R  and curve fits for the chosen 
kinetic model. 

The initial guess for E / R need not be close to the 
actual value. The program decides whether the upper 
limit of the chosen interval is too high, which would 
mean excessive iterations and slower convergence 
to the actual value, or the lower limit of the chosen 
interval is too low and there is no possibility of con- 
vergence to the actual value. The check used in the 
software is the linear regression coefficient. The ini- 
tial interval for E / R  ( e l  I E / R  I e2)  is divided into 
three equal intervals and the regression coefficient 
is calculated at e l ,  em = ( e l  + e 2 ) / 2 ,  and e2. The 
corresponding linear regression coefficients are r 1 , 
r m ,  and r2 .  If r2 > rm > r l ,  then the upper limit 
of the range is extended to a higher value. If r2 < r m  
< rl , then a lower limit of the range is extended to 
a smaller value. When r m  is greater than r2 and r l  , 
then we have the appropriate range for E / R .  The 
program now concentrates on converging to the best 
value of E / R  in this interval. This interval is further 
divided into 10 equal parts. The actual value lies 
inside one of these intervals. The software finds the 
best regression coefficient among the 10 subinter- 

vals. The search is continued by dividing the interval 
with the best regression coefficient into further 10 
subdivisions. This process of convergence is repeated 
until a specified criteria is satisfied. In the present 
study, the difference between el  and e2 were spec- 
ified to be less than lo-’, which would indicate that 
we have arrived at  E / R  with the best regression 
coefficient fitting the model. 

Modeling Using Conversion Data from Isothermal 
Experiments 

Derivative Method of Analysis 

As in the case of analyzing dynamic data, the start- 
ing equation for derivative analysis of isothermal 
data is eq. ( 1 ) . The computer program calculates 
(da) / (dt ) by finding the slope between two adjacent 
conversion points in the isothermal data. Then, for 
the selected model, it calculates the value of f (a) 
at each point and stores the results in an array. A 
plot of (da ) / (dt)  with f ( a )  should yield a straight 
line with a slope k and zero intercept. 

Integral Method of Analysis 

For isothermal reactions with the temperature being 
constant, eq. ( 2 )  can be integrated to 

(7) 

or 

Since in isothermal experiments there is an initial 
dynamic portion, during which some reaction may 
take place, the start of the actual isothermal con- 
ditions corresponds to a nonzero value of conversion, 
al. With this consideration, eq. (8) becomes 

where tiso represents the time for the isothermal part 
of the experiment. A plot of g(a) - g(al) vs. tiso 
should be a straight line with zero intercept and a 
slope equal to the rate constant k. 

Kinetic Models 

The models tested during the present study repre- 
sent a wide variety of reaction mechanisms, the 
simplest being the homogeneous reaction model 
which assumes that the reaction is occurring si- 



358 KIRAN AND IYER 

multaneously at the molecular level throughout the 
sample. This may be a rather simplistic assumption 
considering the complexity of cure reactions. How- 
ever, it establishes a reference for comparative anal- 
yses. Also included in the homogeneous reaction 
mechanism category is the autocatalytic type of re- 
actions, where the initial reaction products help 
catalyze the reaction process, thus accelerating the 
reaction rate. Autocatalytic reaction models are of- 
ten used to describe the cure kinetics in epoxy sys- 
t e m ~ . ' - ~ * ' ~  

When the initiation of reaction occurs at a phase 
boundary and advances into the unreacted zone of 
the sample, the kinetic characteristics of the overall 
rate process are determined by the geometrical mode 
of advance of the reaction interface from these 
boundaries toward the centers of the unreacted zone. 
Depending on whether this advance (phase bound- 
ary movement ) occurs in two or three dimensions, 
the rate expressions are termed contracting area or 
contracting volume equations, respectively.11J2J7 

In diffusion-limited reactions, the overall rate is 
determined by the movement of reactant species to- 
ward, or a product from, a reaction interface. Dif- 
fusion can be envisioned to take place in one, two, 
or three dimensions. The rate expressions include 
these differences in the mode of diffusion. In the 3- 
dimensional diffusion models tested in this study, 
the Gintsling-Brounshtein model assumes Fick's 
law of diffusion while the Jander model assumes that 
the thickness ( x )  of the diffusion layer increases 
according to dx/dt = D / x ,  where D is the diffusivity 
and t denotes the time." 

The nucleation process involves conversion of a 
small volume of reactant into a stable particle of 
product and continued reaction (growth) occurs 
preferentially at the interfacial zone of contact be- 
tween these two phases. Initial nucleation and 
growth expressions, like the power law expression 
which assumes that growth rate increases contin- 
ually were developed to describe crystallization pro- 
cesses and fail to describe actual chemical reaction 
processes for which such an assumption would be 
unrealistic. However, modifications by Avrami, l9 

Erofeev and Mitskevich,20 and Mampel" yield a 
more general form of the equation that is found to 
describe many reactive systems over the entire con- 
version range. 

Results of Kinetic Modeling Using Data from 
Dynamic Experiments 
Derivative Method of Analysis 
Homogeneous models are often used to describe cure 
reactions in the Figure 5 is a plot for 

- 1 0 - 1 J o . o  
0.0018 0.0020 0.0022 0.0024 0.0026 0.0026 0.0030 

1/T. K-' 

Figure 5 Derivative analysis of dynamic data obtained 
at 10 K/min heating rate. Homogeneous first-order ki- 
netics model. 

the derivative analysis of the dynamic data using 
the homogeneous first-order kinetics model. The 
plot shows the variation of In { ( da / dt  ) / [ f ( a ) I } 
with 1/T and the corresponding conversions. The 
l n { ( d a / d t ) / [ f ( a ) ] }  vs. l /Tplot isnotastraight  
line over the whole 1 / T range and shows a marked 
change in slope at around 30% conversion. Similar 
results were obtained from the analyses of dynamic 
data collected at 20 and 40 K/min heating rates. 
The change in slope occurred at around 30% con- 
version in these runs also. Since the slope is a mea- 
sure of the activation energy, the results indicate a 
marked change in the energetics of the reaction be- 
yond 30% conversion. As shown in Table I1 ( a )  ? the 
activation energy becomes approximately one-half 
its value observed at  the lower conversion range. 
Such a decrease in apparent activation energy is 
commonly observed in heterogeneous reactions, es- 
pecially when diffusional limitations set in.24 The 
present results may therefore be interpreted to imply 
that beyond 30% conversion diffusional factors be- 
come significant in curing of phenolic-paper com- 
posites. It is interesting to note that the rate at which 
30% conversion is reached does not seem to matter, 
and the shape of the plots show the change at this 
characteristic conversion. 

To better describe the data, further analyses were 
carried out separately in the conversion ranges of 
0-30% and 30-95%. As shown in Figure 6, the ho- 
mogeneous first-order reaction model describes the 
conversion data up to 30% conversion well, and the 
plots of the In { (da /d t ) / [  f (  a ) ]  } vs. 1 /T is indeed 
a straight line. In this conversion range, we have 
tested all other models shown in Table I. The ho- 
mogeneous first-order model was found to describe 
the data best. 
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Table I1 Derivative Analyses of Dynamic Data 

Model ra E I R  A 

(a) 

First-order kinetics (0-30% converion range) -0.93467 4500 49 
Jander kinetics models (0-30% conversion range) -0.89063 9500 1.5 x lo5 
First-order kinetics (30-95% conversion range) -0.99999 2600 1 
Jander kinetics model (30-95% conversion range) -0.99999 3800 1 

(b) 0-95% conversion range 

First-order kinetics -0.9740 4,500 41 
Autocatalyzed kinetics model 

n = l , m = l  0.4121 -700 0.0015 
n = l , m = 2  0.8485 -5900 5.7 x 10-8 
n = 2 , m = 2  0.6544 -3500 2.7 x 10-~ 

Jander kinetics -0.9562 9500 1.9 x lo5 
Gintsling-Brounshtein model 0.8381 -4500 1.5 x 10-~ 

1-Dimensional diffusion model (n = 2) -0.8965 7200 4,300 
2-Dimensional diffussion model (n  = 2) -0.9292 8200 31,200 

Contracting geometry model 
n = 2  -0.9233 3300 1.0 
n = 3  -0.9523 3700 2.0 

Random nucleation kinetics model 0.8049 -3000 3.2 X 
Avrami-Erofeev model 

n = 1.5 -0.9529 2400 0.4 
n = 2  -0.8371 1400 0.04 
n = 3  -0.3162 400 0.003 
n = 4  0.0676 -90 0.0008 

E. activation energy, r: linear regression coefficient, A: frequency factor. 
a The negative value of the regression coefficient is due to the negative slope of the line in eq. (4). 

In the conversion range 30-95%, not only the ho- 
mogeneous first-order model but also a diffusional 
model (the Jander model) were found to fit the data 
well. Figure 7 shows the results for this model. The 
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-9 

-10 
0.0024 O . W Z 5  O . W Z 8  0.0027 0.0028 0.0029 

1/T. c’ 

Figure 6 Derivative analysis of dynamic data obtained 
a t  10 K/min heating rate. Homogeneous first-order ki- 
netics model. Conversion range 0-30%. 

fact that this model, which is not as good below 30% 
conversion [see Table I1 ( a )  1 ,  yet describes the data 
so well above 30% conversion, is consistent with the 
above-mentioned observation that the apparent ac- 

- 9 1  I , . , . , , , . , 10.0 
0.0020 00021 00022 0.0023 0.0024 

1/T. K-’ 

Figure 7 Derivative analysis of dynamic data obtained 
at 10 K/min heating rate. Jander kinetics model. Con- 
version range 30-95%. 
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0 4 '  " ' ' ' 1  " " ' 1 -  1 " '  

tivation energies decrease beyond this conversion 
and mass transfer limitations set in. Among the dif- 
fusional models, the Jander model has been found 
to best describe the data. 

The results from using all the models including 
first-order and Jander are shown in Table I1 ( b )  for 
the total conversion range of 0-95%. For compari- 
son, the results for the homogeneous first-order and 
the Jander models are also included in the table for 
this conversion range. Over the total range, none of 
the models perform well, but first-order and Jander 
are still better than the others. Even though not 
reported here, for other models, analysis over nar- 
rower conversion ranges did not give results better 
than did the homogeneous first-order or Jander 
model. 

0 33 

Integral Method of Analysis 

For integral analyses, the main criteria are that the 
linear regression coefficient should be very close to 
1 and the intercept should be very close to zero. This 
follows from eq. ( 2 ) .  Continuing with our results 
from derivative analyses of the dynamic data, in- 
tegral analyses were performed separately on two 
conversion ranges, namely, 0-3076 and 30-95%. Ini- 
tially, the homogeneous first-order model was tested 
for the experimental data. Figure 8 shows the results 
for the homogeneous first-order model in the con- 
version range 0-30%. The dots represent the ex- 
perimental data and the solid line represents the 
model prediction. The conversions are also shown 
on the right axis. As can be seen, the data lie on the 
straight line predicted by the model, showing a very 
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Figure 8 Integral analysis of dynamic data obtained at 
10 K/min. Homogeneous first-order kinetics model. Con- 
version range 0-30%. (Values on the left vertical axis cor- 
respond to the conversion values on the right vertical axis.) 

Figure 9 Integral analysis of dynamic data obtained at 
10 K/min. Homogeneous first-order kinetics model. Con- 
version range 30-95%. 

good fit of the model to experimental data. The first- 
order homogeneous and the Jander kinetics models 
were also fitted to the conversion data in the range 
30-9596. Figures 9 and 10 show the results of these 
analyses. Once again, these models describe the data 
well. 

Table I11 ( a )  shows the activation energies cal- 
culated for the first-order homogeneous and Jander 
diffusion models. The activation energy for the 
higher conversion range is approximately 4 of the 
activation energy calculated for the lower conversion 
range, indicating again the presence of mass-transfer 
limitations at high conversions. 

Table I11 ( b )  shows the parameters calculated 
with the other models, for the whole conversion 
range 0-95%. They do not show a good fit to exper- 

I I I 10.30 
0.0 0.3 0.0 0.9 12 1.5 

Figure 10 Integral analysis of dynamic data obtained 
at  10 K/min. Jander kinetics model. Conversion range 
30-95%. 
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Table I11 Integral Analyses of Dynamic Data 

Model E / R  r 6 A 

(a) 

First-order kinetics (0-30% conversion range) 6,900 0.9999 3.9 x 10-3 2000 
0.9994 -1.2 x 10-6 2.1 x 1010 Jander kinetics (0-30% conversion range) 

First-order kinetics (30-95% conversion range) 3,700 0.9995 0.4 8 
Jander kinetics model (30-95% conversion range) 5,200 0.9999 1.5 X 26 

14,000 

(b) 0-95% conversion range 

First-order kinetics 
Autocatalyzed kinetics model n = 2, m = 2 
1-Dimensional diffusion model (n = 2) 
2-Dimensional diffusion model (n = 2) 
Jander kinetics 
Gintsling-Brounshtein model 
Contracting geometry model 

n = 2  
n = 3  

Random nucleation kinetics model 
Avrami-Erofeev model 

n = 1.5 
n = 2  
n = 3  
n = 4  

3,500 
-1,100 

2,700 
3,700 
5,700 
4,300 

0.9993 
0.9962 
0.9914 
0.9960 
0.9994 
0.9977 

1,900 
2,300 

-3,000 

1,900 
1,000 

100 
-400 

0.9960 
0.9976 
0.9951 

0.9989 
0.9988 
0.9989 
0.9989 

-4.7 x 10-2 
-5.7 
-5.7 x 10-2 
-3.1 X lo-' 
-5.2 x 10-3 
-6.5 x 10-~ 

-4.1 X lo-' 
-2.5 X lo-' 
-6.3 

-3.6 X 

0.10 
0.2 

3.3 x 10-3 

6 

0.5 
3 

75 
2.8 

6.0 x 10-~ 

0.05 
0.11 
4.7 x 10-6 

0.13 
1.6 X lo-' 
1.6 x 10-3 
4.0 x 10-~ 

E activation energy, i: intercept, r: linear regression coefficient, A: frequency factor. 

imental data. The results were equally poor when 
calculations were carried out in different conversion 

Results of Kinetic Modeling Using Data from 
Isothermal Experiments 

ranges with these models. Comparison of Table I1 ( a )  
and I1 ( b )  also point out that the derivative mode Derivative Method of Analysis 

of analysis of the dynamic data is more effective in 
discriminating between different models. 

For isothermal experiments, the value of the rate 
constant k is fixed; therefore, the numerical solution 
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A: 0.009 

':I0 

f (a)  

Figure 13 Comparison of derivative analyses performed 
on conversion data obtained for different rates of approach 
to isothermal hold temperature of 450 K: ( a )  10 K/min; 
(b)  20 K/min; (c )  40 K/min approach. 

tiso . sec 

Figure 14 Integral analysis of isothermal data obtained 
at  450 K with 10 K/min approach to hold temperature. 
Homogeneous first-order kinetics model. 

is straightforward. The results of using the homo- 
geneous first-order reaction model to analyze data 
from isothermal experiments performed at  450 K 
are shown in Figure 11. This is a plot of da/dt  vs. 
f ( a )  and shows the actual data, the prediction rep- 
resented by the thin straight line and the variation 
of the conversion with f (a). The results obtained 
using the Jander model is illustrated in Figure 12. 
Comparison of these figures show that the Jander 
model represents the data well. 

Figure 13 shows the d a l d t  values corresponding 
to isothermal data at 450 K that was approached at 
different heating rates, i.e., 10, 20, and 40 K/min. 
The values shown represent the data after isother- 
mal conditions are first reached. These are marked 
with an arrow on each curve. However, during the 
changeover from dynamic heating to the isothermal 
hold mode, there is a transient region for stabili- 
zation. This is reflected by the initial irregularity of 
these curves at  the lower conversion end. The f ( a) 
values in this figure were determined using the 

Table IV Derivative Analyses of Isothermal Data (10 K/min approach) 
(55-100% Conversion Range) 

Model r k 1 

First-order kinetics 0.9892 5.9 x 10-~ -2.7 x 10-~ 

n = l , m = l  0.8945 6.5 x 10-3 -1.2 x 10-4 
n = l , m = 2  0.7296 8.5 x 10-~ -1.2 x 10-~ 
n = 2, m = 2 0.9719 2.7 X 9.2 x 10-5 

1-Dimensional diffusion model (n = 1) 0.9739 4.4 x 10-3 -2.1 x 10-~ 
2-Dimensional diffusion model (n = 1) 0.9720 1.8 x 10-~ -3.7 x 10-4 
Jander kinetics model 0.9812 4.9 x 10-~ 6.2 x 10-5 
Gintsling-Brounshtein model -0.5091 -1.3 x 10-~ 8.7 x 10-~ 

n = 2  0.8941 1.4 x 10-3 -4.0 x 10-4 
n = 3  0.9289 1.0 x 10-~ -2.2 x 10-~ 

Random nucleation kinetics model -0.9427 -3.8 x 10-~ 3.8 x 10-3 

n = 1.5 0.9336 2.8 x 10-3 -1.2 x lo-' 
n = 2  0.9027 2.1 x 10-3 -1.7 x 10-~ 
n = 3  0.8614 1.4 x 10-3 -2.1 x 10-4 
n = 4  0.8360 1.0 x 10-3 -2.3 x 10-4 

Autocatalyzed kinetics model 

Contracting geometry model 

Avrami-Erofeev model 

r: linear regression coefficient; k, rate constant; i, intercept. 



CURE OF PAPER-PHENOLIC COMPOSITE SYSTEMS 363 

0 . o y .  , . , . , . , . , , , , , , , , , , I 0 5  
0 100 200 300 400 500 600 700 800 900 1000 

t,,, I sec 

Figure 15 Integral analysis of isothermal data obtained 
at  450 K with 10 K/min approach to hold temperature. 
Jander kinetics model. 

functional form corresponding to the Jander model. 
After the initial transient, the data appear to lie in 
a straight line passing through the origin, suggesting 
that the Jander model could be used to fit such data. 
The slopes become similar after the 20 K/min heat- 
ing rate. It is not clear why the rate constant for the 
isothermal reaction depends on the rate of approach, 
except for the possible effect of different initial con- 
versions. 

The rate constants calculated from these analyses 
are presented in Table IV for all the models. The 

table shows the rate constants as well as the cor- 
responding regression coefficients and intercepts. 
The homogeneous first-order reaction model and the 
Jander model have the highest regression coeffi- 
cients and the lowest intercepts, which are the cri- 
teria for a good fit of the models to the experimental 
data. Even though some of the models, like the au- 
tocatalytic kinetic model and the one- and two-di- 
mensional diffusion models, show a high degree of 
correlation, they fail to satisfy the second criteria, 
i.e., that the intercepts be close to zero. 

Integral Method of Analysis 

Integral analysis was performed on isothermal ex- 
periments conducted at  450 K and a 10 K/min ap- 
proach. Figure 14 is a plot of g( a) - g( al) against 
isothermal hold time (ti,) for the homogeneous first- 
order model. The conversion profile of the experi- 
mental data is provided for better visual analysis. 
The crosses represent the experimental data and the 
straight line represents the model prediction. The 
data lie close to the straight line, indicating a good 
fit for the homogeneous first-order model. The Jan- 
der model was also tested for the same conversion 
data. The results are shown in Figure 15. The ex- 
perimental data once again lies very close to the 
model prediction. These results corroborate the re- 
sults obtained for the analyses of the dynamic data. 
Table V shows the rate constants as well as the cor- 

Table V 
at 10 K/Min Approach (55-100% Conversion Range) 

Comparison of Integral Analyses of Isothermal Data 

Model r k 1 

First-order kinetics 
Autocatalyzed kinetics model 

n = l , m = 2  
n = l , m = 2  
n = 2 , m = 2  

1-Dimensional diffusion model n = 2 
2-Dimensional diffusion model ( n  = 2) 
Jander kinetics 
Gintsling-Brounshtein model 
Contracting geometry model 

n = 2  
n = 3  

Random-nucleation kinetics model 
Avrami-Erofeev model 

n = 1.5 
n = 2  
n = 3  
n = 4  

0.9992 

0.9862 
0.9131 
0.9871 
0.9867 
0.9929 
0.9832 
0.9927 

0.9904 
0.9953 
0.9201 

0.9970 
0.9923 
0.9842 
0.9789 

5.0 x 10-~ 

5.9 x 10-~ 

1.0 x 10-~ 
9.0 x 10-~ 
4.2 x 10-~ 
2.5 x 10-4 

1.7 X 
4.1 X 

8.4 x 10-~ 

2.8 x 10-~ 
6.8 X 

2 x 10-3 
1.6 x 10-3 
1.1 x 10-~ 
8.8 x 10-~ 

6.3 X 

0.2 
2.0 
0.7 

-8.8 X 
-1.8 x 1 0 - 2  
-1.9 X lo-* 
-7.3 x 10-~ 

9.3 x 10-~ 
3.6 x 10-~ 
0.3 

6.8 X 
2.8 X 
3.7 x 10-2 
3.6 X lo-' 

r, linear regression coefficient; k, rate constant; i, intercept. 
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1 /T 

Figure 16 Rate constants vs. inverse temperature. Rate 
constants obtained from derivative analysis of isothermal 
data using the (+) homogeneous first-order kinetics model 
and (0 )  the Jander kinetics model. 

responding regression coefficients and the intercepts 
obtained from integral analyses using the various 
models. The homogeneous first-order reaction model 
and the Jander model have higher regression coef- 
ficients and lower intercepts. The analysis of dy- 
namic data results based on analysis of the isother- 
mal data indicates that the integral method of anal- 
ysis does not have the ability to  discriminate 
different models as clearly as does the derivative 
method of analysis. 

Activation Energies from Isothermal Experiments 
T o  obtain activation energies from isothermal ex- 
periments, a number of runs were performed at dif- 
ferent temperatures. A plot of the rate constant with 
1 / T yields the value for the activation energy. Figure 
16 illustrates this using rate constants obtained by 
performing derivative analysis of isothermal data 
with the first-order homogeneous model and the 
Jander kinetic model, respectively. The activation 
energies obtained are about 30 kJ/mol. These values 
are of the same order of magnitude ( in  the range of 
20-40 kJ/mol ) predicted from analyses of dynamic 
data shown in Table I1 ( a ) .  (An E /  R value of 4500 
corresponds to  38 kJ/mol.) However, in the litera- 
ture, somewhat higher values have been re- 
poded.6,10,22-24 

CONCLUSIONS 

From the various analyses presented above using 
the derivative and integral procedures on data ob- 
tained from dynamic and isothermal experiments, 
it can be concluded that cure reactions can be rep- 
resented by the first-order homogeneous reaction 
mechanism. Another model that also works well is 

the Jander 3-dimensional diffusion model. It is ob- 
served that  beyond 30% conversion diffusional fac- 
tors become especially significant as reflected by 
substantial decrease in the apparent activation 
energies after this conversion. 
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